Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make a hole in the middle of a polygon
ResourceFunction["PerforatePolygons"][gr] creates a hole in the middle of each polygon in the 3D graphics gr. | |
ResourceFunction["PerforatePolygons"][gr,r] create a hole of size r, where r is the ratio of the hole size to the polygon size. | |
ResourceFunction["PerforatePolygons"][gr,"type"] decomposes into polygons of the specified "type" before creating holes. |
"Simple" | simple polygons | |
"Convex" | convex polygons | |
"Triangle" | triangles |
A set of polygons:
In[1]:= | ![]() |
Out[1]= | ![]() |
Random polygons:
In[2]:= | ![]() |
Out[2]= | ![]() |
A polyhedron:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Another polyhedron:
In[5]:= | ![]() |
Out[5]= | ![]() |
Make smaller holes:
In[6]:= | ![]() |
Out[6]= | ![]() |
With offsets:
In[7]:= | ![]() |
Out[7]= | ![]() |
With Scaled:
In[8]:= | ![]() |
Out[8]= | ![]() |
With ImageScaled:
In[9]:= | ![]() |
Out[9]= | ![]() |
A square with a hole with another square inside:
In[10]:= | ![]() |
Out[10]= | ![]() |
Sometimes different triangulations can be produced:
In[11]:= | ![]() |
Out[11]= | ![]() |
PolygonDecomposition can be used:
In[12]:= | ![]() |
Out[12]= | ![]() |
Starting with a polygon with holes:
In[13]:= | ![]() |
Out[13]= | ![]() |
Using entities:
In[14]:= | ![]() |
Out[14]= | ![]() |
A Bohemian dome surface modifying the ratio of perforation:
In[15]:= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
PerforatePolygons works with other primitives:
In[17]:= | ![]() |
Out[17]= | ![]() |
Convert into a region:
In[18]:= | ![]() |
Out[18]= | ![]() |
Using VertexTextureCoordinates:
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
With VertexColors:
In[21]:= | ![]() |
Out[21]= | ![]() |
Disconnected polyhedra:
In[22]:= | ![]() |
Out[22]= | ![]() |
A polyhedron with a void:
In[23]:= | ![]() |
Out[23]= | ![]() |
A non-convex polyhedron:
In[24]:= | ![]() |
Out[24]= | ![]() |
A polyhedron with scaled coordinates:
In[25]:= | ![]() |
In[26]:= | ![]() |
Out[26]= | ![]() |
A polyhedron with VertexNormals:
In[27]:= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
A holed hexagonal grid:
In[29]:= | ![]() |
In[30]:= | ![]() |
Out[30]= | ![]() |
Perforate a prism:
In[31]:= | ![]() |
Out[31]= | ![]() |
Outline the prism:
In[32]:= | ![]() |
Out[32]= | ![]() |
Convert polygons to tubes and vertices to spheres:
In[33]:= | ![]() |
In[34]:= | ![]() |
Out[34]= | ![]() |
Nest perforations:
In[35]:= | ![]() |
Out[35]= | ![]() |
In 3D, if the vertices are not in a plane, the polygon triangulation can be unpredictable:
In[36]:= | ![]() |
Out[36]= | ![]() |
Beethoven missing his ninth:
In[37]:= | ![]() |
Out[37]= | ![]() |
A random winding polygon (this may take several minutes):
In[38]:= | ![]() |
In[39]:= | ![]() |
Out[40]= | ![]() |
Decomposing random polygons and perforating twice:
In[41]:= | ![]() |
Out[41]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License