Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make a hole in the middle of a polygon
ResourceFunction["PerforatePolygons"][gr] creates a hole in the middle of each polygon in the 3D graphics gr. | |
ResourceFunction["PerforatePolygons"][gr,r] create a hole of size r, where r is the ratio of the hole size to the polygon size. | |
ResourceFunction["PerforatePolygons"][gr,"type"] decomposes into polygons of the specified "type" before creating holes. |
"Simple" | simple polygons | |
"Convex" | convex polygons | |
"Triangle" | triangles |
A set of polygons:
In[1]:= |
Out[1]= |
Random polygons:
In[2]:= |
Out[2]= |
A polyhedron:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Another polyhedron:
In[5]:= |
Out[5]= |
Make smaller holes:
In[6]:= |
Out[6]= |
With offsets:
In[7]:= |
Out[7]= |
With Scaled:
In[8]:= |
Out[8]= |
With ImageScaled:
In[9]:= |
Out[9]= |
A square with a hole with another square inside:
In[10]:= |
Out[10]= |
Sometimes different triangulations can be produced:
In[11]:= |
Out[11]= |
PolygonDecomposition can be used:
In[12]:= |
Out[12]= |
Starting with a polygon with holes:
In[13]:= |
Out[13]= |
Using entities:
In[14]:= |
Out[14]= |
A Bohemian dome surface modifying the ratio of perforation:
In[15]:= |
In[16]:= |
Out[16]= |
PerforatePolygons works with other primitives:
In[17]:= |
Out[17]= |
Convert into a region:
In[18]:= |
Out[18]= |
Using VertexTextureCoordinates:
In[19]:= |
In[20]:= |
Out[20]= |
With VertexColors:
In[21]:= |
Out[21]= |
Disconnected polyhedra:
In[22]:= |
Out[22]= |
A polyhedron with a void:
In[23]:= |
Out[23]= |
A non-convex polyhedron:
In[24]:= |
Out[24]= |
A polyhedron with scaled coordinates:
In[25]:= |
In[26]:= |
Out[26]= |
A polyhedron with VertexNormals:
In[27]:= |
In[28]:= |
Out[28]= |
A holed hexagonal grid:
In[29]:= |
In[30]:= |
Out[30]= |
Perforate a prism:
In[31]:= |
Out[31]= |
Outline the prism:
In[32]:= |
Out[32]= |
Convert polygons to tubes and vertices to spheres:
In[33]:= |
In[34]:= |
Out[34]= |
Nest perforations:
In[35]:= |
Out[35]= |
In 3D, if the vertices are not in a plane, the polygon triangulation can be unpredictable:
In[36]:= |
Out[36]= |
Beethoven missing his ninth:
In[37]:= |
Out[37]= |
A random winding polygon (this may take several minutes):
In[38]:= |
In[39]:= |
Out[40]= |
Decomposing random polygons and perforating twice:
In[41]:= |
Out[41]= |
This work is licensed under a Creative Commons Attribution 4.0 International License